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On the basis of the existence of second and third moments of fluctuations, we 
prove a theorem about the Lie-algebraic structure of fluctuation operators. This 
result gives insight into the quantum character of fluctuations. We illustrate the 
presence of a Lie algebra of fluctuation operators in a model of the anharmonic 
crystal, and show the dependence of the Lie-algebra structure on the fine structure 
of the fluctuation operator algebra. The result is also applied to construct the 
normal Goldstone mode in the ideal Bose gas for Bose-Einstein condensation. 
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1. I N T R O D U C T I O N  

In refs. [ 1, 2 ], a theory has been developed in order to establish the quantum 
structure of normal fluctuations for quantum lattice systems. One considers 
a cubic lattice Z v. At each lattice site x ~ Z v one associates a C*-algebra ~ 
of single-site observables. The observables measurable within the volume A 
is given by the algebra d ,  = Q x ~ A ~ .  The typical examples are quantum 
spin models where ~r is a matrix algebra. The algebra of observables for 
the infinite system is given by the C*-inductive limit d of the minimal 
tensor product algebras { d a ,  A c ZV}. Denote by zxthe  space translation 
�9 -automorphism of d .  Typically one considers a set of local states CO A for 
each volume, in particular Gibbs states for some local Hamiltonian or a 
ground state, such that the, weak limit of the co A, A ~ Z v, tends to an 
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extremal translation invariant state co, i.e. co.rx=co and for all A, Be  ~ ,  
liml,,I __. ~ co(ArxB) = co(A ) co(B). 

If the functions x---, co(ArxB)-co(A) co(B) are g't(Zv)-functions, one 
proves that the limits 

F~ lim F'~(A) (1.1) 
A ~ Z  v 

of the local fluctuations 

1 F~ x~] .,~A (rxA-~A(A)) (1.2) 

exist in the sense of a non-commutative central limit theorem. (~'2) More- 
over one shows that the fluctuations {F~ A e ~ }  are given by a 
representation of the canonical commutation relations, satisfying 

[F~ F~ = lim ~A([F~ F~ 
A 

(1.3) 

This formula marks the non-commutative character of the fluctuations. 
This representation is determined as the GNS-representation of a 

quasi-free state ~ on the Bose field algebra generated by the fluctuations 
{ F~ A e d } .  The state c5 is determined by the formula 

rS(e~ar~ ---~- ~ (co(ArxA)-m(A) 2) (1.4) 
A x 

The f'~-cluster property ensures the Gaussian character of the limit and the 
convergence of the exponential in formula (1.4). It is important to realize 
that all these results apply only to situations where the fluctuations are 
normal (g'l-cluster property), but the case of long range correlation systems 
at phase transitions, do not fit into the schema above. A first attempt to 
generalize the theory to this more interesting situation has been given in 
ref. [3]. There is proved that the abnormal fluctuations generate a Lie 
algebra which can be more general than the Heisenberg-algebra. An exam- 
ple of this more general situation is already given by the harmonic crystal 
in the ground state.(3 

It is the aim of this paper to give a proof of the Lie algebra character 
of the fluctuations (for definitions see Section 2) solely under the condition 
of the existence of the variance (second moment) and the third moment. 
It means that the Lie algebra structure emerges already without assuming 
the existence of all moments, or the characteristic function. The setting 
of our proof (Section 3) amounts to prove an In6nii-Wigner contraction 
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theorem, t4'5) which characterizes the set of abnormal fluctuations as 
an abstract Lie algebra, under conditions which are much weaker than in 
ref. [ 3 ]. The price to be paid is that we cannot identify the representations 
of the Lie algebra. Nevertheless, the step forward is that we show that 
the second and third moment already determines the Lie algebra or non- 
commutative structure of the algebra of abnormal fluctuations. This 
theorem gives detailed information about the quantum character of quan- 
tum systems at its level of fluctuations. Our theorem is illustrated in the 
models of the anharmonic and harmonic crystals (Section 4). In ref. [ 3 ], 
the first illustration was given for the toy model of the harmonic crystal. 
Here we generalize this result to a more realistic model, extending con- 
siderably the result on the CCR-algebra given in ref. [6].  

Our main theorem is also used in the explicit and rigorous construc- 
tion of the normal mode canonical variables associated with the Goldstone 
Boson, which appears as a consequence of spontaneous gauge symmetry 
breaking in the Boson state with condensation (Section 5). It is the first 
mathematically rigorous construction of the long wavelength, low fre- 
quency normal mode in the presence of spontaneous symmetry breaking. 
Be it done here only for the ideal Bose gas, we strongly believe that this is 
a first step towards a general construction. 

2. F L U C T U A T I O N S  

An abstract Lie algebra is an n-dimensional vector space ff with basis 
{ v~} ~= l ..... , and with product 

vj v k -  [ vj, vk] = �9 c)kv (2.1) 

where the cfk are the structure constants for that basis satisfying: 

t = 0  (2.2) Cfk + Ckj 

r s r s r s (c~j c rk + C)~ C ri + C *~ C rj) = 0 (Jacobi ident i ty )  (2.3) 
r 

Consider here a concrete Lie algebra ff of operators in ~r 
Let 

{ Z o = i l ,  Zl , . . . ,Zm};  m <  oo (2.4) 

be the basis of the Lie algebra fq, such that 

L * = - L j ;  j =  0, 1,..., m 

co(Lj) = lima coa(Lj) = 0 for j > 0. 
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Clearly, coA(Lo) = i for all A. The Lie algebra f# is always non-semisimple. 
For the basis { Lj }, we have the product rule 

[Lj, = Z .' c)~L, (2.5) 
s  

with real structure constants. Because of the special choice of Lo = i 1, one 
has c~, = Ckot = 0 and because the means of the (Lj)j__ ~ . . . . .  m vanish, one has 
c~. = - i  lima co A([ Lj, Lk ] ). We consider now the fluctuations of the gener- 
ators of f9 and are looking for a characterization of the Lie algebra of these 
fluctuations if any. 

For each finite volume A c Z v, define the local fluctuations 

1 
Lj(A)=IAI,/Z+'------~ Z Ev,.Lj--CoA(Lj)]; j= i,...,m (2.6) 

.,c e A 

1 
Lo(A) =ilI =T-~ _~A el = il  (2.7) 

p 

For j = 1,..., m, Lj(A) is the local fluctuation around its equilibrium value. 
The unit operator (2.7) does not fluctuate. However for notational con- 
venience, we introduce (2.7) nevertheless. Now we formulate the basic 
conditions for our purposes. 

C o n d i t i o n  A. We assume that the parameters dj are determined by 
the existence of the finite and non trivial variances: 

0 <  -limcoA(Ls(A)2)< ~ ;  j = 0 ,  1,.. . ,m 1--1 (2.8) 
A 

Remark that the parameter d0 in (2.7), is already been taken as 
d0 = 1/2, i.e. the condition (2.8) is satisfied for j =  0. After reordering the 
basis of (r one can put: 

= t (2.9) t~ 0 l > t ~  i ~ t ~ 2 ~  . . .  ~ t ~ m >  - - ~  

C o n d i t i o n  B. We assume that all third moments are finite, i.e. for 
j, k, f = 1,..., m one has: 

lim IcoA(Lj(A) Lk(A) Lt(A))I < ~ ffl (2.10) 
A 

Remarks. Although, we are not going here into the details of the 
precise form of the sequence { con} A of states, we have in mind, that co A is 
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a Gibbs state for some local Hamiltonian H A i.e. for all A e d ;  ogA(A)= 
tr e- /m, ,A/ tr  e -Imp. The limit A ~ Z v is in the sense of increasing cubes 
A = [ -  L, L] ", and (2.8) can depend very strongly on the boundary condi- 
tions taken for defining HA (see e.g. ref. [6]  and Section 4). 

The parameters ~y are determined by the conditions (2.8) for the exist- 
ence and non-triviality of the variances. If for some j >f 1, the corresponding 
6j= 0, then the operator L/has a normalfluctuation operator A'~j= lima Lj(A),  
where the limit is understood in the sense of (2.8). It is proved in ref. [ 2 ], 
that one has normal gaussian fluctuations if the function 

x ~ 2v~ ~ og(Ljr.,.Lj), j>~ 1 

is an C~(Z~)-function. On the other hand, if one has long-range correla- 
tions, e.g. if 

( 1 ) 
~o(LjvxLj) ~ 0 ixl~_=+.+ 

with r b < 2, then the parameter ~j is related to the r b, the critical exponent 
of the static susceptibility for Lj, by the relation: 

r b = 2(1 - v5j) 

This relation leads to 0 < v - 2 + r/: = v( 1 - 2~/) or fij < �89 The indices 5 are 
a measure to detect at which level of space scaling, fluctuations do become 
visible. Because of the above argument, we limit our discussion to values 
fi/< �89 for 1 ~< j ~< m (see (2.9)). Also 6 = �89 yields the law of large numbers, 
i.e. averages and not fluctuations. Remark that we put formally 50 = 1. 

Furthermore, in order to satisfy (2.8), it can happen that the param- 
eter ~j has to be chosen negative. An explicit example is given in ref. [ 61, 
in the case that o9 is a ground state on the critical line. In this case, it is 
reasonable to limit our discussion to the situation that all ~j > -  �89 (see 
(2.9)). In all cases, if 8j r 0, then the fluctuation 

Lfj-- liAm Ls(A) 

is called an abnormal fluctuation. 
Finally we would like to stress that Condition B (2.10) about the 

finiteness of the third moments is independent of Condition A (2.8), 
because new cluster properties on the correlation function are implied. 
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Lemma 2.1. If Condition A is satisfied, the limit set {~y}y=o, ~ . . . . .  m 

generates a pre-Hilbert space ~o, with scalar product 

(s .Lfk)= lim coA(LT(A)Lk(A)) (2.11) 
A 

and dim ~o ~< m + 1. 

Proof.  From (2.8) and Schwartz-inequality, one gets: 

ICOA(L*(A) Lk(A))[ 2 <~ coA(Lj(A) 2) coa(Lk(A) 2) 

By the compactness argument the sequence (2.11) has an accumulation 
point. By polarization and (2.8) the limit exists. F-I 

Suppose that it happens that ~j = ~j+~, i.e. the fluctuations of L i and 
of Lj+~ do appear at the same space scaling level, then there are two 
possibilities. Either, ~ and ~.+~ are linearly dependent in o~o, then we 
identify them (we consider the corresponding equivalence classes in ~o), or 

and .L~'S+l are independent. In the latter case, we rearrange the basis 
{ Lj } j of f9 (Gram-Schmidt orthogonalization) such that: 

(Lfj, ~ .+ , )  = 0  (2.12) 

As a result, Lemma 2.1, defines the limits ( ~ j ) j = 0 , 1  ..... m as elements of a 
pre-Hilbert space. 

3. LIE ALGEBRA OF FLUCTUATIONS 

We consider now the Lie product of the fluctuations of the generators 
{ Lj }j= o. ~ ..... m of the algebra ff (2.4)-(2.5), given for each finite volume A, 
by the commutator in a ' :  

m 

[Lj(A),Lk(A)] IAI,+~j+~, Z [rxLj, ryLk]= Z c~,(A) LAA) (3.1) 
x, y ~ A  d = O  

where we used the locality in ~r (2.5) and the notations: 

c~ d = l  m t cfk(A) - lAl l/Z +aj+a~_a , ,..., 

c~ = - i c o A ( [ L j ( A ) ,  Lk(A)]) 

(3.2) 
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In particular one has 

m 

c~ = [AI-~j-~k ~ c~kogA(Lt(A)) (3.3) 
g = O  

If moreover Condition C, namely that lima c~ (3.3) exists, then 

I .emma 3.1. For each finite volume, the set {Lj(A)}j=o,~ ..... m 
generates a Lie algebra (#(A) of dimension m + 1 and with structure con- 
stants the e c)k(A ), given by (3.2). 

Proof.  It is an easy exercise to check that the constants cf.k(A ), 
defined by (3.2) satisfy, the symmetry property (2.2): 

t = 0  

and the Jacobi identity (2.3)" 

2 (c~.(A)CSk(A)+ c~k(A ) cS i (A)+ crk i (A)c~. (A))=0 
r 

proving the lemma. I-1 

Clearly by considering local fluctuations one constructs a map from 
the Lie algebra (9 onto the Lie algebra f#(A), by a non-trival change of 
structure constants given by (3.2). This change is not just a change of basis 
of the Lie algebra, it becomes singular in the limit A tending to infinity. 
When the transformed structure constants approach a well defined limit, 
and the transformation becomes singular, a new, non-isomorphic Lie algebra 
might appear. The limit algebra f#(Zv), called the contracted one of the 
original, is always non-semisimple. This contraction is a typical In6nfi- 
Wigner contraction. (4, 5) Our main theorem yields a proof of the existence of 
the algebra fg(Zv), by proving the limit of the structure constants (3.2). 

T h e o r e m  3.2. If the conditions A and B are satisfied, then 

(i) l imc~k(A)=O,  
A 

if � 8 9  

Proof. 

(ii) lim / C)k ( A ) = c)k , if l "JI- dj "~" d k -- d [ = O 
A 

(iii) C~k = O, if � 8 9  

The cases (i) and (ii) are trivial. We prove (iii). First we prove 
that: 

fij + d~ < 0 holds only if c~ = 0 (~) 
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By simple computation, using co(L:(A))=O for : #0 ,  30 = �89 og(Lo(A))=i 
and (2.9), one gets: 

lim IfOA([Lj(A), Lk(A)])I IAl'~J+a* = l im Ic~ IAI aj+a~ 
A A 

=l im ~ lic~ a, coA(L:,(A)) = Jc?k I 
A :'=o IA - 

But by Schwartz inequality, Condition A (2.8) and the fact that 6j + Ok < 0: 

IcOkl -- lim IAlaJ+~* ]og,([Lj(A), Lk(A)])l 
A 

2 lim I/I'~J +'~* [ coA(Lj(A)2) toA(Lk(A)2)] ,/2 = 0 
A 

proving (~). 
Now we prove that 

�89 + 6: + Ok - 5: < 0 holds only if c~k = 0 (fl) 

We prove it by induction on the index :. For the induction case take 
: = 0, then 

In (~)we proved that then c~ =0.  Hence limA c~176 
By induction, suppose that the statement (fl) holds for all : '  < r and 

that �89 + 5: + 6k - 6 :  < 0. This implies that, because of (2.9) also �89 + 6: + 
gk-5: ,<O. 

Using the induction hypothesis, consider now: 

lim IcoA([Lj(A), Lk(A)]L:(A))I IAI '/z +aJ +~*-'~: 
A 

m 

:' IAla: '-a: co,(L:,(A) L:(A)) =l im ~ cjk 
A d'----O 

m 

= lim ~ cf~ [A[ '~:'-a: ogA(L:,(A) L:(A)) 
A : ' - - d  

= lim Idl ImA(L:(A)2)] 
A 

The last equality is obtained as follows. If : '  > :  but 6: = 6:, then one uses 
(2.12), if : '  > :  and 6 : , - 6 : < 0  (2.9), then it follows that in the sum over 
: ' />  :, only the term : ' =  g' remains. Now, using Condition A (2.8) and B 
(2.10), together with the fact that �89 + 6: + 6k - J :  < 0, one gets cf.k. = 0. This 
proves (fl) and (iii). FI 
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This theorem settles the limit Lie algebraic structure of the fluctuations 
algebra fa(Z ") as an abstract Lie algebra with generators { ~ } ~=0. ~ ..... ,, and 
structure constants (lima t c), ( A ) ). 

It is interesting to distinguish a number of special cases" 

(a) for normal fluctuations all Oj=0, except ~0 = �89 hence from the 
theorem one gets 

limc~'k(A)=0 for f '=  1,2,...,m 
A 

lim c~ c~ = - ico([Lj ,  Lk]) 
A 

This means that the ~. are the generators of a Lie algebra such that 

where 

[ = =  o,o(Lj, L , )  

a,,,(Lj, = L , ] )  

(3.4) 

and ao, is a symplectic form on the initial algebra f#. The { ~ }  form a 
Boson field satisfying the canonical commutation relations (CCR) (3.4). 

(b) If � 8 9  for all j , k , l ,  one obtains a commutative 
algebra of fluctuations. 

(c) One has the richest structure if � 8 9  for all j, k, ~ or 
for some of them. We obtain a phenomenon of scale invariance of the 
physical system (c-.9, co) i.e. the cJk(A) are independent of the volume A 
(3.2), then algebras different from the CCR-algebra are observed (see e.g. 
ref. [ 3 ] for an example). 

One recovers again the CCR-structure although the fluctuations are 
abnormal if ~j = - O k  ~ 0, i.e. one of the parameters is negative e.g. ~j < 0 
and the operator ~ is the result of space squeezing, Ok > 0 and ~ is 
dilated. This yields a microscopic explanation of the phenomenon of 
squeezing in quantum optics (see e.g. ref. [ 6]). A new application of this 
situation is given in the next section. 

4. Q U A N T U M  FLUCTUATIONS IN ORDERED AND 
DISORDERED STATES 

As the first application of the above general theorem we discuss the 
Lie structure of the algebra of fluctuation operators in a model of quantum 

822/89/3-4-11 
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ferroelectrics (6) in the ordered phase, as well as in a toy harmonic crystal 
model, (3) where evidently there is no ordering. 

It is in the quantum ferroelectric model that the nontrivial quantum 
character of critical fluctuations was observed for the first time: fluctuations 
generated by the canonical operators of displacements { Q:}: ~ z,, Q: e R', 
and momenta { P:} :~za become non-abelian on the critical line when the 
critical temperature T~(2)~ 0 for 2 ~ 2~. Here 2 = h/x ~ is the quantum 
parameter of the model, where m is the mass of the atoms in the sites of 
a ferroelectric lattice. 

We shall show that this non-abelian property at Tc(2~)=0 is not by 
accident. As was observed in ref. [ 6] there is no ferroelectric order for any 
temperature if 2 >f 2~ (for the general ease see ref. [ 7]). On the other hand 
in ref. [ 6] it was also discovered that below the critical line, i.e., for 2 < 2~ 
and T <  T~(2) (ordered phase domain), fluctuations get sensitive to the 
quasi-average type of perturbation even in the pure phases. In this section 
we extend the result of refs. [6, 8] and compute the critical exponents 
fie, 8p on the line 2 e (0, 2~) at T =  0. 

Moreover the Lie structure has been already observed in the 
framework of a toy harmonic model. (3) In spite of the similarity between 
the harmonic model and anharmonic one in ref. [ 6], there is a drastic dif- 
ference between the models on the level of the fluctuations, provoked by 
the existence or nonexistence of an order parameter. 

We recall shortly the model (6) and its properties which we need to 
establish the above results. 

Let o~ = L E(R l) and Z a be the d-dimensional cubic lattice, d > 2. Let 
{ Q:, P:} be a copy of the canonical position and momentum operators 
Q and P on Jr i.e., Q:: ~ e,~: ~ x:~(x:) ,  P:: ~ e ~ ~ (h/i) Oxen(x:) 
and ~r r Jr:. For each finite set (hypercube) A c Z d the local 
Hamiltonian has the form 

P~ 1 
HA(h) = ~A ~m + -4 y' 

g g , g ' ~ f 2  

t/ 
~::,(Q: _ Q:,)E + 2 :~A Q2 

(' ) 
Here { #::,} r, :, ~ z, is the matrix of harmonic forces, a > 0 and the W-term 
mimics double-well one-site potentials responsible for the dispacive ferro- 
electric phases. For example W(x) = lb exp(--r/x), b > 0, r/> 0, see ref. [ 6]. 
The last term in (4.1) breaks the Q: ~ - Q :  symmetry and is retained for 
the construction of different limiting (extremal) equilibrium states co(. ). 
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Below the critical line Tc(2), 2 ~ [ 0, 2~), there are (at least) two trans- 
lation invariant extremal equilibrium states o9• defined by the quasi- 
average procedure: 

CO• lim limCOa, h(') (4.2) 
h--* +0  A 

where CO a, h is the state defined by the local Hamiltonian (4.1). These states 
correspond to the broken symmetry states with order parameter 

og+(Q:) = -CO_( Q:) >>. o (4.3) 

Moreover, straightforward calculations of the fluctuation operators in 
the extremal translation invariant states yield: (6) 

CO(F~Q(Q)2) = lim COA, h(F~e(Q)2) 
A 

= lim 1 2 cth 1 
A [A[2~'----~ 2 ~/A(c,~---~ ~ f12 ~/A(cA) 

CO(F~e(P) 2) = lim COA. h(F~e(P)2) 
A 

= lim 1 2m 1 
a 1112~, 2 x/A(ca)cth ~ f12 x/A(cA) (4.4) 

w h e r e  CA = CA(h )  v e r i f i e s  t h e  equation 

h 2 1 ~ A cth 1 
C A --" Z~2(CA ) "+'~1 q �9 2Qq(CA---"" ~ ~ fli~"~q(CA) (4.5) 

2 where 2 ._ Here~ A~* is dual~ of the hypercube A and 422(c) = A(c) + COq, COq 
$ (0 ) -$ (q ) ,  $(q)is the lattice Fourier-transform of the matrix See, = Se_e,, 
and d(c)=a+2W'(c). There exists c*>0 ,  such that d(ca~c*)~O, and 
A(c=c*)  =0. 

The same type of calculations imply: 

h 
coh(Q~) = lim COA, h(Qe) = l i m ~  (4.6) 

,1 el(cA(h)) 

P r o p o s i t i o n  4.1. Let ha=fz/lAI ~, then for T > 0  and below the 
critical line, for short-range interactions (092q =s2q2+ 0(q2), q - ,  0) one has: 
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(a) limcoA.h,(.)=co+(.) if 0 < 0 c < l ,  here +=sign/~ 
A 

(b) limcoA.h,(.)=kco+(.)+(1-k)co_(.), 
A 

0 < k < l  

a convex combination of extremal states, if ~ i> 1. l'q 

For the proof we refer to [ 6, Proposition 4.2 ]. For us it will be impor- 
tant to remember that in the regime (a), the equation (4.5) below the critical 
line becomes: 

0<p(T ,  2 ) = l i m (  /~ ) 2 
A IAI = z l (~A(h~) )  

= c * - I a ( c * ,  T, 2) (4.7) 

where the integral Id is given by: 

Iu(c, T, 2)= lim 1 ~ ~ 1 A f-~ q . 2Dq(C) cth ~ flAaq(C) (4.8) 

Hence we get an extremal phase with the order parameter (4.6) equal to 

co• = (sign/~) ~/p(T, 2) (4.9) 

Corollary 4.2. The Proposition 4.1 is valid below the critical line 
for T - 0 ,  i.e., for the interval (0, 2c), with the only modification of the 
range of 0c. The case (a) corresponds to 0 < ~  <2,  while the case (b) 
corresponds to ~ >/2. 

Proof. It is a straightforward consequence of the equation (4.5) 
modified for T = 0 and 0 < 2 < 2c, that: 

( /~ ) 1 1  2 1 ~ 2 (4.10) 
c . =  iAl~zl (c . )  + l h l z ~ / z l ( c . ) + l - - ~  q �9 2 ~ ( c . )  

For 0 < ~ < 2  one gets in the limit (cf. (4.7), (4.8))" 

(co+(Qe))2=lim( /~ ) 2 = c* -- ld( C*, T=0 ,  2) (4.11) 
- . IAI= zl(cA) 

whereas for ~ = 2, due to the q = 0  term in (4.10), we have 

co_(Qe)<l imcoA.hJQe)=l im = <co (Q~) (4.12) 
a . IAI z at(CA) + 
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and for 0~ > 2 we obtain 

lim coA. hA( Q:) = O (4.13) 
A 

which corresponds to a mixed state, with k = 1 (see Prop. 4.1(b)). El 

Now we come back to the fluctuations (4.4) for pure states below the 
critical line. 

Theorem 4.3. Let the breaking symmetry perturbation ha in (4.1) 
be of the form hA = [t/IAI ~. Then for the short-range interaction below the 
critical line T < Tc(2), 0 < 2 < 2~, in the extremal states co_+ (.) we have: 

(a) OQ=0~/2, Oe=0, for T > 0  and 0 < 0 c < l ;  

(b) O Q = - O e = ~ / 4 ,  for T = 0  and 0<0c<2  
(4.14) 

Proof. (a) As far as below the critical line lima d(cA) =0,  the case (a) 
results from (4.4) and (4.7). 

(b) The same line of reasoning for (4.4) modified for f l= oo (see 
(4.10)) gives immediately the result (4.14). El 

Remark 4.4. On the critical line and for long-range interactions 
the fluctuations (4.4) are studied in refs. [ 8, 9, and 10]. For example, on 
the critical line at the point Tc(2c) = 0  one has 8 Q = - 8 ?  where for short 
range interactions (see ref. [ 8 ], d > 2) 

~'0c/6 for 0 ~< a < 1 (4.15) 
8Q(a) = (1/6 for 1 ~< 

The case of mixed states below the critical line, co= kco+ + ( 1 - k )  co_, 
0 < k <  1, corresponds to 0c>~ 1 in (4.14) (a) and 0c>~2 in (4.14)(b). 

Corollary 4.5. Non-abelian (quantum) nature of fluctuations: 
e + 8p = 0, (4.4) below the critical line T < To(2) emerges only on the 

interval (0, 2c], T =  0. El 

Hence, if the quantum parameter 2 > 0 then the fluctuation operators 
FZQ(Q), FZe(P) in the pure ground states form a CCR-algebra (3.4). The 
same holds above the critical line while 2 = 0, yields a classical algebra of 
fluctuations. 

Let us note that results of the Theorem 4.3 are based on the scaling 
analysis of the spectral gap A(cA)~ IAI -~ provoked by the symmetry 
breaking perturbation ha = h/IAI ~, see (4.7) and (4.11). 
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Now we consider the fluctuation of Q2, which yields together with P 
and Q, in the "toy harmonic model" a 4-dimensional Lie algebra of fluctua- 
tion operators for ? >I 1. t3) The "toy harmonic model" is described in the 
following Hamiltonian: 

1 e~A p = + l  Ha = 2-- ~ 
1 g 2 .  

~ ~k:(Qk-- Qe) 2-~ 2 IAI ~ e~A Q: '  Y > 0  (4.16) 
k , ~ E A  

If one passes to the Fourier transforms for P:  and Qe in (4.1) and (4.16), 
these Hamiltonians get the same formal expression except that the Fourier 
coordinates Q.(q) a re  shifted in (4.1) t o  O(q)" 

hq (4.17) Qtq)=Q(q) 2 ~.q 

where h q=hlA[ ~/2 t~q, 0, and the spectral gap A(ca) is identified with g/lA! y. 
For the model (4.1) we have: 

Theorem 4.6. Let F%=(Q z) be the fluctuation operator of the 
squares of the local displacements in the ordered pure (0 ~< ~ < 2) or mixed 
(~ t> 2) ground states perturbed by hA = h/IAI ~. Then for 2 e (0, 2c) we have 

f~/4 for 0 ~< ~ < 2, (4.18) 
5Q=(=) = ~ 1/2 for 2 ~< 

whereas for 2 = 2~ one has (d>  2) 

5Q2(a) = 0 for 0<~= (4.19) 

The (4.19) is true for all 2 > 2r as well as for the whole domain above the 
critical line T~(2), i.e. in all disordered states. 

Proof. Using the shift (4.17), the fluctuation operator F~Q2(Q 2) can 
be identically represented as the sum of the two fluctuations, namely as: 

1 -- Q:)) 
d E A  

= ) + 
Eft 

IAI%~+~-%A(cA) 
F~Q(Q) (4.20) 
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This means that we have to study the asymptotic behaviour of two terms. 
In the pure ordered state, the behaviour of the gap A(CA) is given by (see 
(4.7)): 

ZI(CA)= IAI~, ~ 

Therefore the asymptotics of the coefficient of the second term in the 
representation (4.20) is given by = IAI%-'~o ~. The existence of the limiting 
fluctuation (4.20) is guaranteed by the existence of a non trivial limit for 
the coefficients. We know from [ 3 ] that for ? = 0c: 

if O~<a<l  

1 (4.21) 
if 1 ~<~<2 

On the other hand we know Oe(o~)=o~/4 from Theorem 4.3(b). 
Using this knowledge, in view of (4.20), we get immediately 

Now for 2 = 2c, from (4.4) one gets the asymptotics A(cA) ~--IAI--4r Then 
on the basis of the expression (4.20), one obtains the asymptotics of the 
coefficient of F~Q(Q) given by IAI6o~+~-5aQ. By (4.15): ~ - 5 8 q > 0  for ~>0 .  
Again from ref. [3] for all values o f y = 4 O e > 0  (4.16), we have ~02(~)>f0, 
therefore the coefficient of F~o'(~) 2) can only be finite if and only if 8Q2 >1 0. 
Hence 8Q2 + ~ - 5 8 Q  > 0 and the second term in (4.20) always vanishes. 
Therefore OQ~=802, and at the point 2c, the models (4.1) and (4.16) coin- 
cide. For the toy model (4.16) we know that if the gap A(cA) behaves like 
[A[-Y, with y < 1, then ~02=0 (cf. (4.21). Now due to (4.15)-y =48Q(~)< 
] <  1, hence ~Q2(~) = 0 for all ~>0 .  

Finally if 2 > 2c, then the gap A(cA) always stays strictly positive and 
all fluctuations remain normal. UI 

Now we want to clarify the difference in the quantum nature of the 
fluctuation operators in view of the ordered or disordered states. From the 
discussion in Section 3, it is clear that the most interesting situation in 
Theorem 3.2 is provided by the case (ii) of scale invariance: �89 + 8j. + ~ , -  
8 :=0 .  In order to satisfy this equation in pure states (all ~'s less than 1/2), 
one has to have that at least one of these exponents is negative. Therefore 
it is instructive to learn first what are the consequences of the presence of 
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at least one squeezed operator in the triplet considered. In both of our 
models (4.1) as well as in (4.16), the operator P is the local operator with 
squeezed fluctuations on the line T = 0  and 2 ~ (0, 2~]. 

Consider the following identity: 

limlAl~,+~r -o~([Faf(P),F~Q2(Q2)]) lim2h = - 09A(Q) 
A A 1 

(4.22) 

Remark that on the right hand side one gets the order parameter for the 
discrete symmetry (Q ~ -  Q) breaking in the anharmonic crystal model 
(4.1). By Theorem 4.3 and 4.6 one gets 8 e + S Q 2 = 0  for all 0c" 0~<0c<2, 
which is in correspondence with lima coA(Q)r in (4.22). On the other 
hand for the toy harmonic model (4.16), one has B e + B e 2 < 0  (4.14) and 
(4.21), which by (4.22) fits with the absence of order parameter or with 
lima coA(Q) =0. This shows that our general result (Theorem 3.2) and the 
relative magnitude of the critical indices 6 do give some information on the 
nature of the spontaneous symmetry breaking. Therefore it is natural to 
reconsider also the Goldstone theorem from our point of view. This 
theorem concerns systems in which a continuous symmetry group is spon- 
taneously broken. A first attempt, preparing more general results, is given 
in the next section. 

5. GOLDSTONE NORMAL MODE IN BOSE CONDENSATION 

As an application of the general theorem above we give a mathemati- 
cally rigorous derivation of the existence of the Goldstone normal mode in 
Bose condensation. It is popular wisdom in many-body theory as well as 
in field theory that each system, displaying order in some direction, i.e. 
showing spontaneous symmetry breaking, has collective modes which arise 
as a consequence of the broken symmetry. For short range interactions, the 
frequency of the collective mode tends to zero. The Goldstone theorem t~2) 
predicts a sharp point co=0 in the spectrum of the time evolution at 
k = 0 .  t~3) In mathematical language, (~4) the broken symmetry is not 
implementable. However up to now, there is not yet a general and mathe- 
matically rigorous construction of this Goldstone mode as a normal mode. 
Here we present this construction for the special case of the perfect Bose 
gas. 

The situation of long range interactions is quite different. In this case 
one observes a frequency co-~ 0 at k "--0. (15-17) The mathematically rigorous 
setting of the corresponding mode has been settled in the one-component 
plasma tlS) and in the Overhauser model. (19) 
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Coming back to the Bose gas, one considers a finite volume A in R d 
d >i 3 of size V, and the well known model 

HA = ~ cokak ak + h x / ~  (a* + ao) (5.1) 
k~A* 

where h is an external field which will tend to zero with the volume at the 
rate 

h = fT/ v ~ ~ > 0  (5.2) 

Furthermore, the 

* 1 I ak = - ~  vdx eikXa*(x); k~A* 

are Boson creation operators, and cok = k2/2m-/t~, where ph is the chemi- 
cal potential, determined by the density p, through the constraint: 

P - O-)A ( _ ~ )  = tr e -B(H,~ --uhaNa)NA 
tr e -a~n~ -uh~ N~) 

N A -.-~" �9 akak (5.3) 
k 

for all volumes A. In the thermodynamic limit A -0 •a, keeping the density 
p constant one gets, using (5.2): 

p lim + liAm 1 1 = + pc(la ~ T) (5.4) 
a p V ~ "Ve-a~,h_l 

where 

1 J r 1 /~h o h p.(T)=Iq(T,O) and (2zr)d clk -Ia(T, ), a =limPA e p(tk-tuh)- 1 .a 

One has breaking of the gauge symmetry in the zero-mode: 

lim co = lim 
~ ~ / ~ h v ~  

The condensate density is given by 

P~176176 \ V i A  = liam ( ~ : V  ~)2 (5.5) 
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We do not analyse the case 0c >i 1, because in that case, the limit Gibbs 
state, which one obtains is not an extremal invariant state, but a mixture 
of states with different phases, see ref. [ 20]. 

Now we consider the canonical coordinate of the zero-mode, nor- 
malized in the usual way: 

ao+a~ 1 1 ,( 
qA = ? 2 Z  - 2x,/~o x f V  dx(atx)+,  x)) (5.6) 

This is except for the substracting of the average value, a local fluctuation 
of the operator (a(x)+ a*(x))/2x/~oo, at the point x (see (1.2)). Our point 
is, that we give a meaning to the canonical coordinate of the zero-mode 
(5.6), by considering it as a fluctuation of the type considered in Section 2. 
In particular ,we consider 

1 ;A dx(a(x) + a*(x)--co.,i(a(x))--CoA(a*(x))) 
L,(A) = V,/2 +<~, ~ (5.7) 

First we look for the parameter 8~ in order to satisfy Condition A (2.8). 
Compute: 

+ 
1 ) (  1 ) 

e-aU~ l --~t h A 

Using (5.5), Condition A (2.8) is satisfied if and only if 

~l =0c for T > 0  (5.8) 

0~ 
81 = ~ for T = 0 (groundstate) (5.9) 

By Lemma 2.1 this settles the limit of the canonical variable (5.7) with 81 
given by (5.8) or (5.9): 

= lim L~(A) (5.10) 
A 

Now the conjugate variable to (5.6) is the canonical momentum operator 
given by 

pA=i  _/~~ qA] (5.11) 
Xl Z 
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Again this leads us to consider the fluctuation of the local operator now 
given by ~/COo/2 (a*(x)-a(x)). Consider now 

1 ~ ~A dx(a*(x)-a(x)-coa(a*(x))+ coA(a(x))) LE(A) = Vl/2 +a2 (5.12) 

Again we determine the parameter ~2 by Condition A. Compute: 

o~.,(z,~(A):')=~-~ 2 ,/\~+ , ) 
e - a ~ _  1 

Using (5.5), one checks that (2.8) is satisfied if and only if 

82=0  for T > 0  (5.13) 

0C 
8 2 = - -  for T = 0  (groundstate) (5.14) 

2 

Again, following Section 2, this settles the limit of the momentum canonical 
variable (5.12) as a fluctuation operator, for all T~>0: 

~2 = lim L2(A) (5.15) 
A 

Remark also that Condition B (2.10) is automatically satisfied, because we 
have only two generators L~ and L2. 

The operators { Sa~, Sa2} form the canonical pair of operators corre- 
sponding to the long wavelength (in fact k =0) ,  low-frequency normal 
mode in the presence of the broken symmetry, namely the gauge symmetry. 

It is interesting to remark that in the absence of condensation, these 
canonical variables are always normal fluctuations i.e. always 6~ = 62 = 0. 

Now, applying Theorem 3.2, in the case of condensation, one gets the 
following Lie algebras: 

(i) if T > 0, then ~ = 0c > 0, see (5.8) and c~2 = 0, see (5.13), hence 
c~l + ~2 > 0, d~o = �89 and therefore [ ~ ,  ~2] = 0 by Theorem 3.2(i). The Lie- 
algebra, generated by {~l~ ~2} is abelian and the fluctuations behave 
classically. 

(ii) if T = 0 ,  then ~ =0c/2, see (5.9) and ~2 = -0c/2, see (5.14), hence 
8~ + 8 2 = 0  and therefore: [ ~ ,  &a2] = - i l  Theorem 3.2(ii). We have bona 
fide quantum mechanical canonical commutation relations, with the 
phenomenon of squeezing of the momentum variable. 
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6. CONCLUSIONS 

The results of this paper deal mainly with critical fluctuations. First of 
all fluctuations are defined as operators, which enables us to focus on the 
quantum effects seen at the level of fluctuations. The paper contains three 
main results. In Section 3 we prove a theorem about the Lie-algebra struc- 
ture of fluctuations, based on the knowledge of the variances only. In Sec- 
tion 4, we discuss explicitly the quantum effect to detect the ground state 
of the toy harmonic crystal model and of an anharmonic crystal model. 
Apart for the illustrative aspects for our theorem, we want to point out that 
this computation reveals a rich fine structure of the fluctuation operator 
algebra. It is well known that below the critical temperature the model 
(4.1) has only two extremal equilibrium states. However at the level of the 
fluctuations, we find a whole class of states depending on the parameter 0c 
(see Theorem.4.3 and ref. [ 8 ] where the same phenomenon was discovered 
for critical fluctuations, i.e. degeneracy on the critical line). The latter 
parameter fixes the way the limit extremal state is prepared in our treatment. 
For classical spin systems this is done by the boundary conditions, for 
quantum systems boundary conditions are somewhat more mysterious, t23~ 
However, the above phenomenon is not due to the specific quantum nature 
of the system but to the algebra of observables considered. In our case, the 
algebra of fluctuation operators, which is of course totally different from 
the algebra of local observables, enables us to detect this degeneracy. 

In fact, this kind of phenomena was already observed in the one- 
dimensional Ising model. (24) There they considered a specific way of 
approaching the ground state (T--* 0) and revealed a non trivial structure 
of the set of observables related to the magnetisation fluctuation. 

Finally in Section 5, we give an explicit mathematical coherent con- 
struction of the Goldstone normal mode which is a consequence of the 
spontaneous breaking of the gauge symmetry. Although, this result is only 
for the Bose gas, we are convinced that there is a general theorem behind, 
yielding a new point of view on the Goldstone theorem in any situation of 
spontaneous symmetry breaking. We will come back to this yet open 
problem, as well as to other aspects of the Goldstone theorem, in particular 
to the question of the Anderson's reconstruction theorem of symmetries. 
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